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Outline

What is optimization?

Optimization algorithm?

Steepest descent

Best possible algorithm?

Based on:

• "Negative curvature obstructs acceleration for strongly geodesically convex optimization” - C & Boumal – COLT’22

• “Curvature and Complexity: Better lower bounds for geodesically convex optimization” - C & Boumal – COLT’23

• “Synchronization on circles and spheres with nonlinear interactions” - C, Rebjock, McRae, Boumal - under review

• “The sensor network localization problem has benign landscape under mild rank relaxation” - C, Rebjock, McRae, Boumal –

under review
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What is optimization?

Find minimum of function 𝑓 over 𝑀 = set of possibilities

min
𝑥∈𝑀

𝑓 𝑥

Examples:

𝑓 𝑥 = 𝑥4 − 3𝑥2 − 𝑥
𝑀 = {numbers} 

4



What is optimization?

Find minimum of function 𝑓 over 𝑀 = set of possibilities

min
𝑥∈𝑀

𝑓 𝑥

Examples:

𝑓 𝑥 = 𝑥4 − 3𝑥2 − 𝑥
𝑀 = {numbers} 

5



What is optimization?

Find minimum of function 𝑓 over 𝑀 = set of possibilities

min
𝑥∈𝑀

𝑓 𝑥

Examples:

𝑓 𝑥 = 𝑥4 − 3𝑥2 − 𝑥
𝑀 = {numbers} 

6



What is optimization?

Find minimum of function 𝑓 over 𝑀 = set of possibilities

min
𝑥∈𝑀

𝑓 𝑥

Examples:

𝑓 𝑥 = 𝑥4 − 3𝑥2 − 𝑥
𝑀 = {numbers} 

7



What is optimization?

Find minimum of function 𝑓 over 𝑀 = set of possibilities

min
𝑥∈𝑀

𝑓 𝑥

Examples:

𝑀 = all lines

𝑓 line = distance between points 

  and line

8



What is optimization?

Find minimum of function 𝑓 over 𝑀 = set of possibilities

min
𝑥∈𝑀

𝑓 𝑥

Examples:

𝑀 = all lines

𝑓 line = distance between points 

  and line

9
𝑓 𝛽 = 𝑋𝛽 − 𝑦 2



What is optimization?

Find minimum of function 𝑓 over 𝑀 = set of possibilities

min
𝑥∈𝑀

𝑓 𝑥

Examples:

𝑀 = all lines

𝑓 line = distance between points 

  and line

10
𝑓 𝛽 = 𝑋𝛽 − 𝑦 2



What is optimization?

Find minimum of function 𝑓 over 𝑀 = set of possibilities

min
𝑥∈𝑀

𝑓 𝑥

Examples:

𝑀 = all lines

𝑓 line = distance between points 

  and line

11
𝑓 𝛽 = 𝑋𝛽 − 𝑦 2



What is optimization?

Find minimum of function 𝑓 over 𝑀 = set of possibilities

min
𝑥∈𝑀

𝑓 𝑥

Examples:

Higher dimensional variants

Harder, can’t visualize!

Easily encounter millions of features
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What is optimization?

Find minimum of function 𝑓 over 𝑀 = set of possibilities

min
𝑥∈𝑀

𝑓 𝑥

Examples:

How to find best matching of medical students

to residency programs?

𝑀 = all possible matchings
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What is an optimization algorithm?

Algorithm = method to solve an optim problem

Imagine super-complicated function 𝑓 stored on a computer/server

What can you do to minimize 𝑓?

• You can evaluate 𝑓 on an input 𝑥, and get 𝑓 𝑥

• You can evaluate 𝑓 on an input 𝑥, and get “gradient” ∇𝑓 𝑥
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What is an optimization algorithm?

Algorithm = a method to choose queries 𝑥0, 𝑥1, 𝑥2, …
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Steepest descent

gradient ∇𝑓 𝑥  = direction of steepest descent

Imagine you are skiing in a blizzard, or hiking in a dense forest

You want to minimize your elevation as quickly as possible

Simple idea: follow direction of steepest descent!

Algorithm = Steepest Descent
𝑥𝑘+1 = 𝑥𝑘 − 𝜂∇𝑓 𝑥𝑘

25



Steepest descent

gradient ∇𝑓 𝑥  = direction of steepest descent

Imagine you are skiing in a blizzard, or hiking in a dense forest

You want to minimize your elevation as quickly as possible

Simple idea: follow direction of steepest descent!

Algorithm = Steepest Descent
𝑥𝑘+1 = 𝑥𝑘 − 𝜂∇𝑓 𝑥𝑘

26



Steepest descent

gradient ∇𝑓 𝑥  = direction of steepest descent

Imagine you are skiing in a blizzard, or hiking in a dense forest

You want to minimize your elevation as quickly as possible

Simple idea: follow direction of steepest descent!

Algorithm = Steepest Descent
𝑥𝑘+1 = 𝑥𝑘 − 𝜂∇𝑓 𝑥𝑘

27



Steepest descent

gradient ∇𝑓 𝑥  = direction of steepest descent

Imagine you are skiing in a blizzard, or hiking in a dense forest

You want to minimize your elevation as quickly as possible

Simple idea: follow direction of steepest descent!

Algorithm = Steepest Descent
𝑥𝑘+1 = 𝑥𝑘 − 𝜂∇𝑓 𝑥𝑘

28



Steepest descent

gradient ∇𝑓 𝑥  = direction of steepest descent

Imagine you are skiing in a blizzard, or hiking in a dense forest

You want to minimize your elevation as quickly as possible

Simple idea: follow direction of steepest descent!

Algorithm = Steepest Descent
𝑥𝑘+1 = 𝑥𝑘 − 𝜂∇𝑓 𝑥𝑘

29



Steepest Descent

Simple idea: follow direction of steepest descent!
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Steepest Descent

Simple idea: follow direction of steepest descent!
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Sometimes steepest descent doesn’t work!



Steepest Descent

Q: For which optim problems does steepest descent work? 

→ see Part II of my PhD thesis!

Simple application from thesis: Locating a drone from distance sensors

Given: distances between drone and sensors

Goal: Find location of drone, ie, 𝑥, 𝑦, 𝑧-coordinates

Thm: Steepest descent always works! (under assumptions)
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Best algorithm?

Other algorithms than steepest descent?

Yes! SGD, Nesterov acceleration, Trust regions, …

Which algo is best? 

• Space of algos is huge (infinite), can’t test all of them on your problem!

• That’s where math enters – prove there is no better algorithm

48
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Best algorithm?

Other algorithms than steepest descent?

Yes! SGD, Nesterov acceleration, Trust regions, …

Which algo is best? [Smallest time 𝑇 to finish. Eg, assume 1 query per second]
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Best algorithm?

Consider a class of optimization problems {𝑓1, 𝑓2, … }

min
𝑥∈𝑀

𝑓𝑖 𝑥

Examples: Linear regression with different sets of data,

         Drone localization with different distance measurements 

Amanda, Chris, Joe each have an algo

Amanda: Mine minimizes every problem in the class in at most 200 seconds.

Chris:        ”      ”              100 seconds.

Joe:        “      “   50 seconds.
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• Amanda’s is suboptimal

• Joe is lying
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Best algorithm?

Consider a class of optimization problems {𝑓1, 𝑓2, … }

min
𝑥∈𝑀

𝑓𝑖 𝑥

Chris: I can prove that no other algo can do better than 100 seconds.

What this means: For every algo 𝐴, I mathematically construct a problem 𝑓 in 
the class so that  running 𝐴 on 𝑓 takes at least 100 seconds to finish.

→ Part I of my thesis, looks at a specific class (geodesically convex functions), and 
proves there is a fundamental limit for that class.
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→ Part I of my thesis, looks at a specific class (geodesically convex functions), and 
proves there is a fundamental limit for that class.

Some consequences:

• Steepest descent is optimal for that class (under some assumptions)

• Surprising because expectation in community was that steepest descent is not 
optimal
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Steepest Descent
Optimal!

Nesterov Accelerated Descent?
Not Possible!
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