PhD Public Defense

On the Complexity of Optimization: Curved Spaces and Benign Landscapes

Candidate: Chris Criscitiello

Advisor: Nicolas Boumal

OPTIM, Chair of Continuous Optimization

Outline

What is optimization?

Optimization algorithm?

Steepest descent

Best possible algorithm?

Outline

What is optimization?

Optimization algorithm?

Steepest descent

Best possible algorithm?

Based on:

- "Negative curvature obstructs acceleration for strongly geodesically convex optimization" C & **Boumal** COLT'22
- "Curvature and Complexity: Better lower bounds for geodesically convex optimization" C & **Boumal** COLT'23
- "Synchronization on circles and spheres with nonlinear interactions" C, Rebjock, McRae, Boumal under review
- "The sensor network localization problem has benign landscape under mild rank relaxation" C, **Rebjock, McRae, Boumal** under review

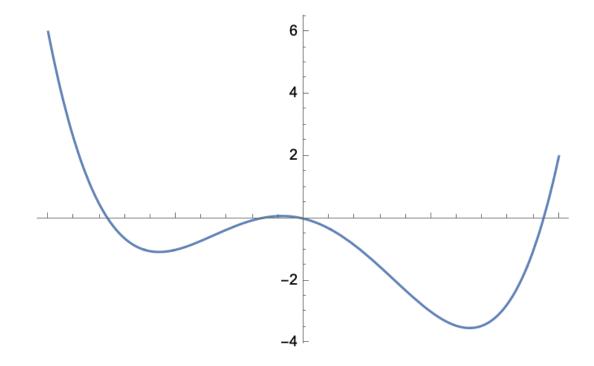
Find minimum of function f over $M = \{\text{set of possibilities}\}$ $\min_{x \in M} f(x)$

Find minimum of function f over $M = \{\text{set of possibilities}\}$

$$\min_{x \in M} f(x)$$

$$f(x) = x^4 - 3x^2 - x$$

$$M = \{\text{numbers}\}$$

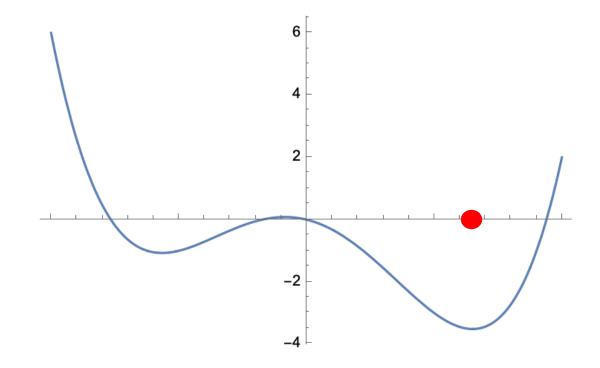


Find minimum of function f over $M = \{\text{set of possibilities}\}$

$$\min_{x \in M} f(x)$$

$$f(x) = x^4 - 3x^2 - x$$

$$M = \{\text{numbers}\}$$

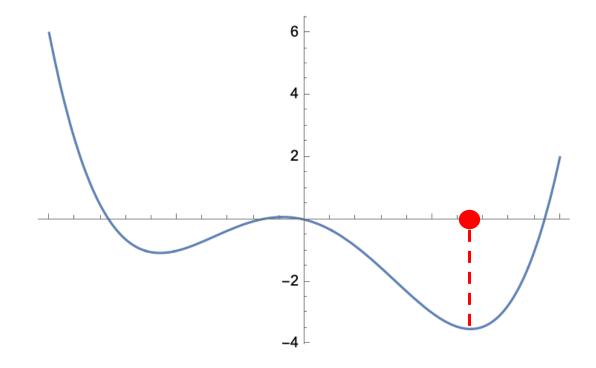


Find minimum of function f over $M = \{\text{set of possibilities}\}$

$$\min_{x \in M} f(x)$$

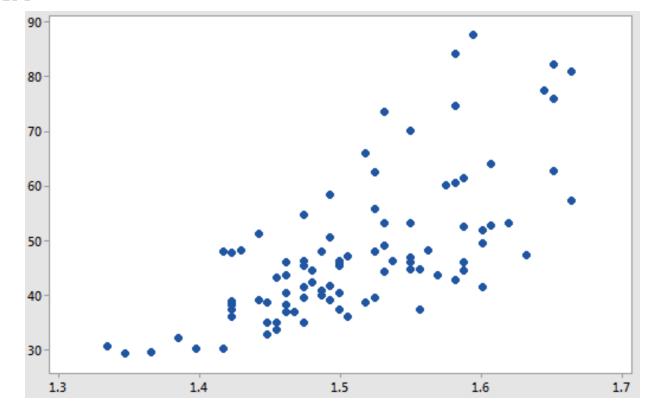
$$f(x) = x^4 - 3x^2 - x$$

$$M = \{\text{numbers}\}$$



Find minimum of function f over $M = \{\text{set of possibilities}\}$

$$\min_{x \in M} f(x)$$



Find minimum of function f over $M = \{\text{set of possibilities}\}$

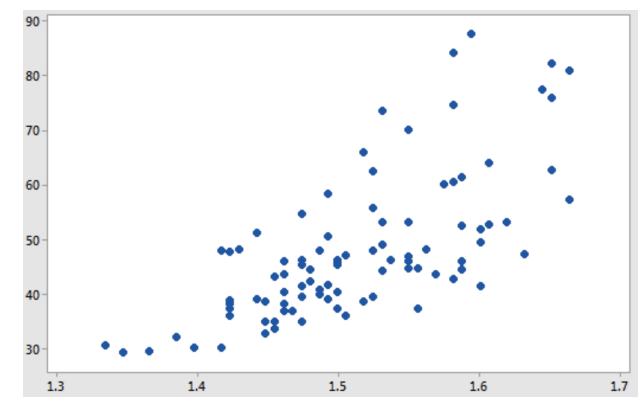
$$\min_{x \in M} f(x)$$

Examples:

$$M = \{all lines\}$$

f(line) = distance between points and line

$$f(\beta) = \|X\beta - y\|^2$$



Find minimum of function f over $M = \{\text{set of possibilities}\}$

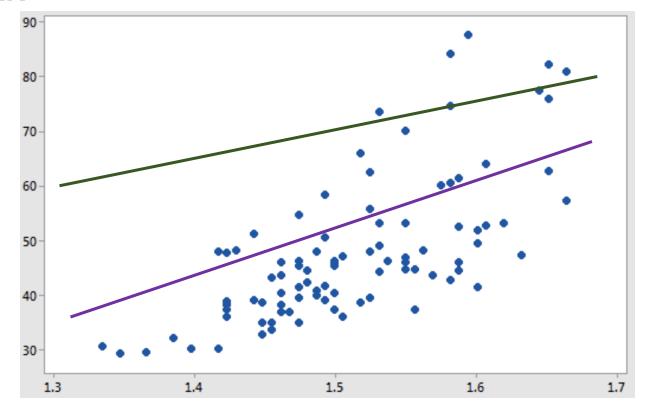
$$\min_{x \in M} f(x)$$

Examples:

 $M = \{all lines\}$

f(line) = distance between points and line

$$f(\beta) = \|X\beta - y\|^2$$



Find minimum of function f over $M = \{\text{set of possibilities}\}$

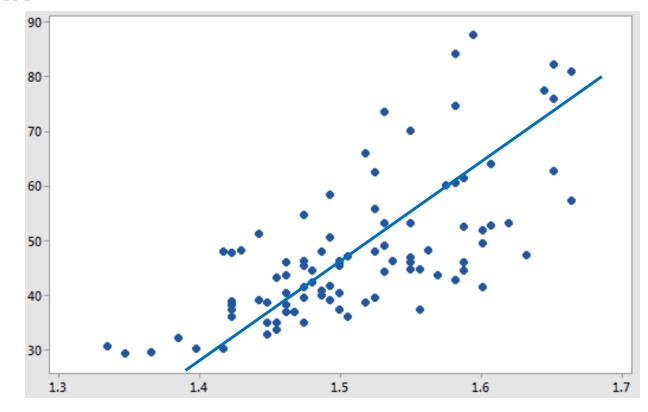
$$\min_{x \in M} f(x)$$

Examples:

$$M = \{all lines\}$$

f(line) = distance between points and line

$$f(\beta) = \|X\beta - y\|^2$$



Find minimum of function f over $M = \{\text{set of possibilities}\}$

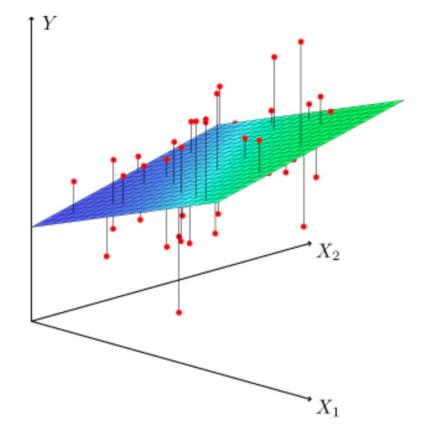
$$\min_{x \in M} f(x)$$

Examples:

Higher dimensional variants

Harder, can't visualize!

Easily encounter millions of features



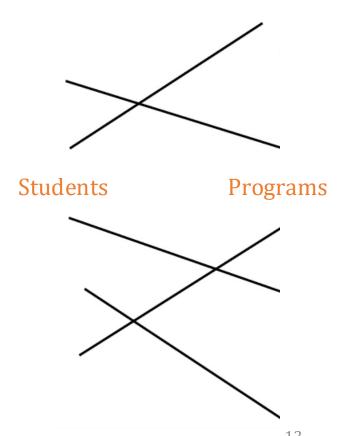
Find minimum of function f over $M = \{\text{set of possibilities}\}$

$$\min_{x \in M} f(x)$$

Examples:

How to find *best* matching of medical students to residency programs?

 $M = \{all possible matchings\}$



Algorithm = method to solve an optim problem

Algorithm = method to solve an optim problem

Imagine super-complicated function *f* stored on a computer/server

Algorithm = method to solve an optim problem

Imagine super-complicated function f stored on a computer/server

What can you do to minimize f?

Algorithm = method to solve an optim problem

Imagine super-complicated function f stored on a computer/server

What can you do to minimize f?

• You can evaluate f on an input x, and get f(x)

Algorithm = method to solve an optim problem

Imagine super-complicated function f stored on a computer/server

What can you do to minimize *f*?

- You can evaluate f on an input x, and get f(x)
- You can evaluate f on an input x, and get "gradient" $\nabla f(x)$

$$x \longrightarrow f(x), \nabla f(x)$$

Algorithm = method to solve an optim problem

Imagine super-complicated function f stored on a computer/server

What can you do to minimize f?

- You can evaluate f on an input x, and get f(x)
- You can evaluate f on an input x, and get "gradient" $\nabla f(x)$

query
$$x \longrightarrow f(x), \nabla f(x)$$

$$x_0 \longrightarrow f(x_0), \nabla f(x_0)$$

$$x_0 \longrightarrow f(x_0), \nabla f(x_0)$$

Algo
$$\longrightarrow x_1$$

$$x_0 \longrightarrow f(x_0), \nabla f(x_0)$$

$$x_1 \longrightarrow f(x_1), \nabla f(x_1)$$

$$Algo \longrightarrow x_2 \longrightarrow f(x_2), \nabla f(x_2)$$

Algorithm = a method to choose queries $x_0, x_1, x_2, ...$

$$x_0 \longrightarrow f(x_0), \nabla f(x_0)$$
 $x_1 \longrightarrow f(x_1), \nabla f(x_1)$
 $x_2 \longrightarrow f(x_2), \nabla f(x_2)$
 $x_T \text{ so that } f(x_t) \text{ is small}$

24

gradient $\nabla f(x)$ = direction of steepest descent

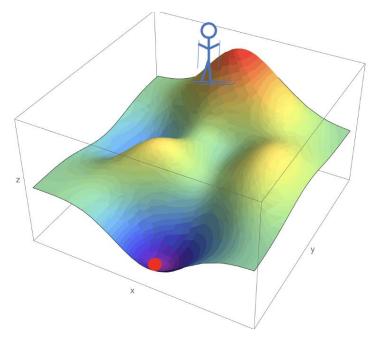
gradient $\nabla f(x)$ = direction of steepest descent

Imagine you are skiing in a blizzard, or hiking in a dense forest

gradient $\nabla f(x)$ = direction of steepest descent

Imagine you are skiing in a blizzard, or hiking in a dense forest

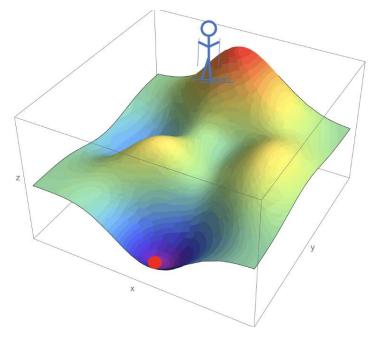
You want to minimize your elevation as quickly as possible



gradient $\nabla f(x)$ = direction of steepest descent

Imagine you are skiing in a blizzard, or hiking in a dense forest

You want to minimize your elevation as quickly as possible



gradient $\nabla f(x)$ = direction of steepest descent

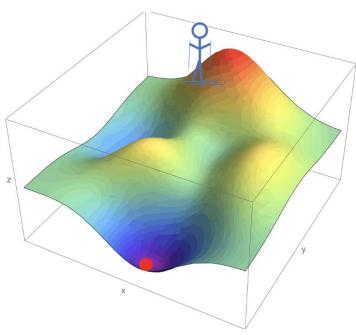
Imagine you are skiing in a blizzard, or hiking in a dense forest

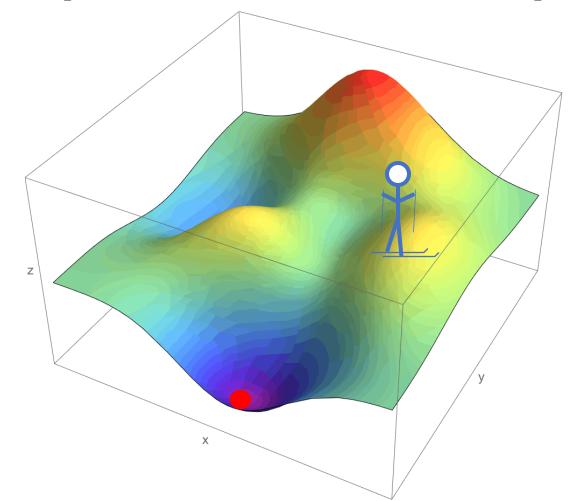
You want to minimize your elevation as quickly as possible

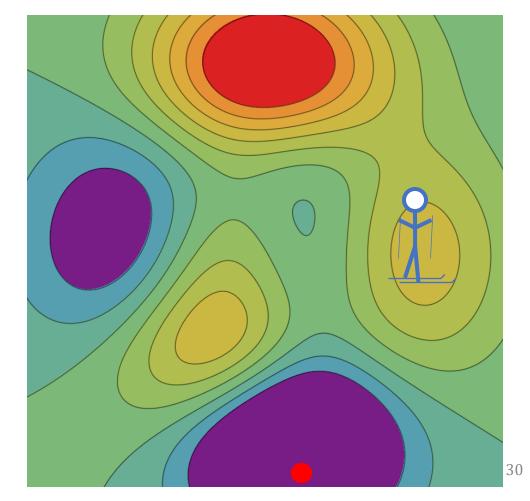
Simple idea: follow direction of steepest descent!

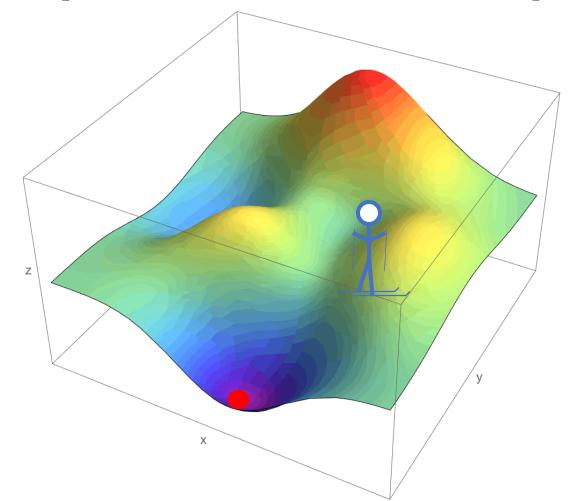
Algorithm = **Steepest Descent**

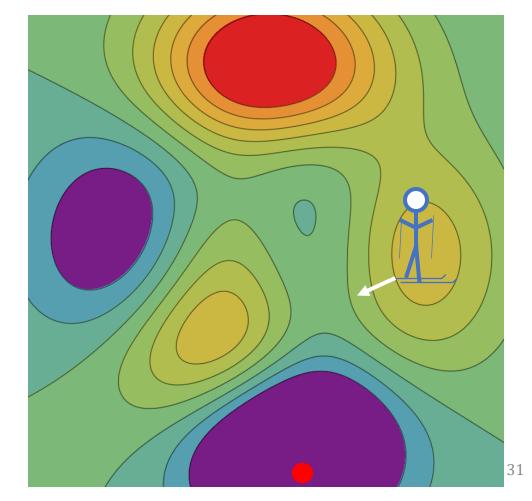
$$x_{k+1} = x_k - \eta \nabla f(x_k)$$

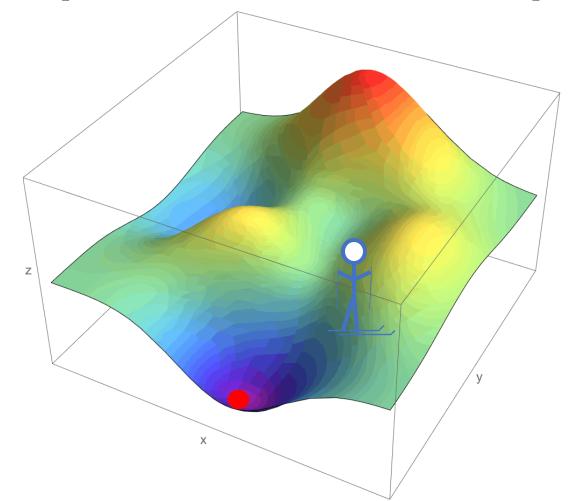


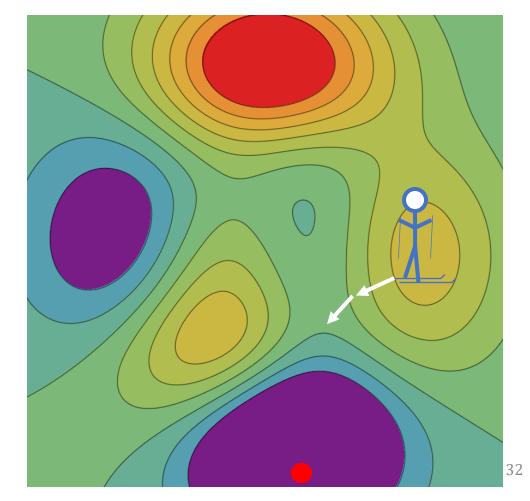


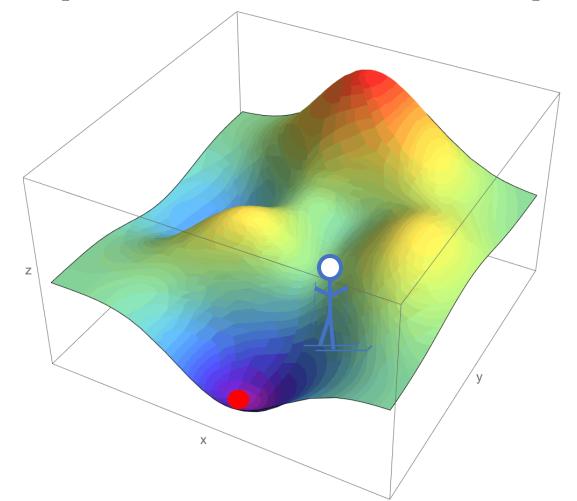


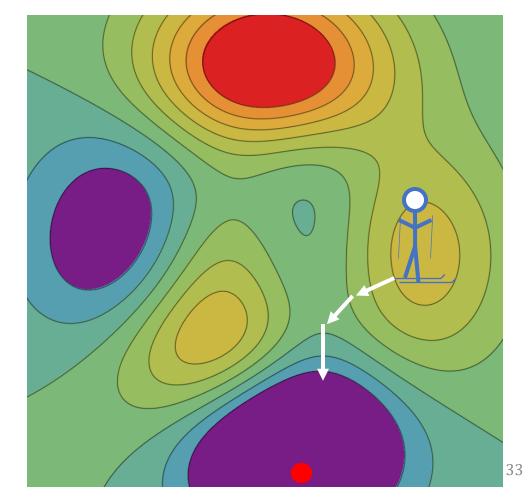


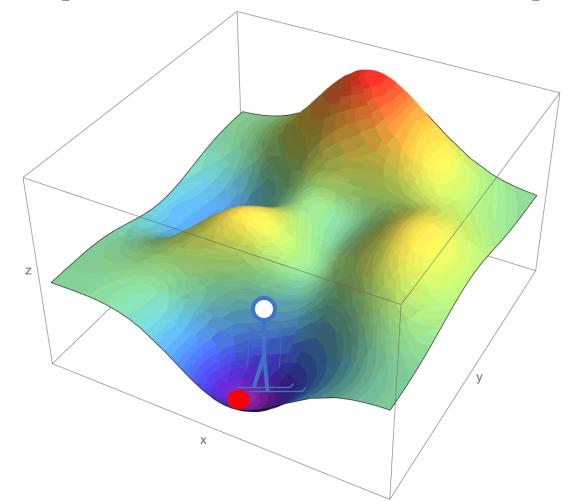


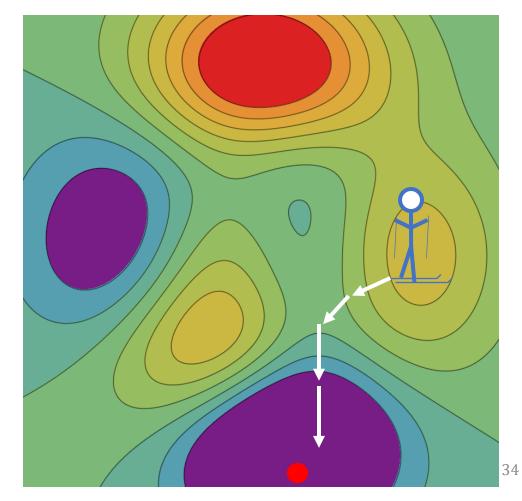


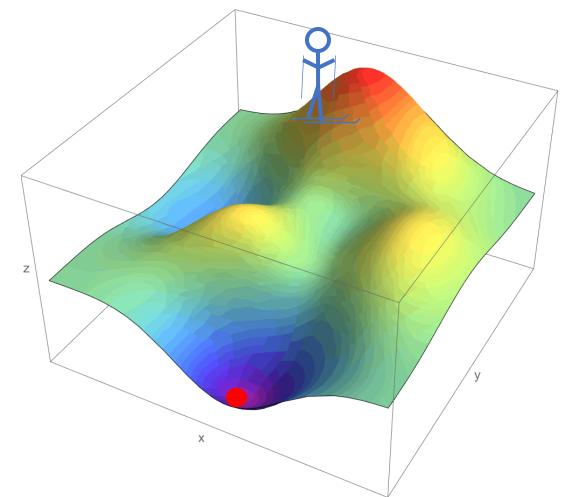


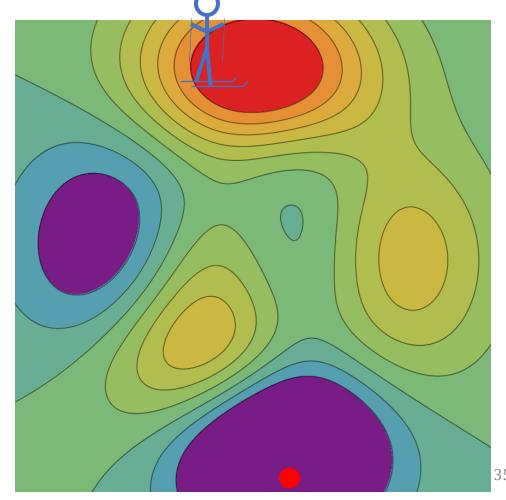


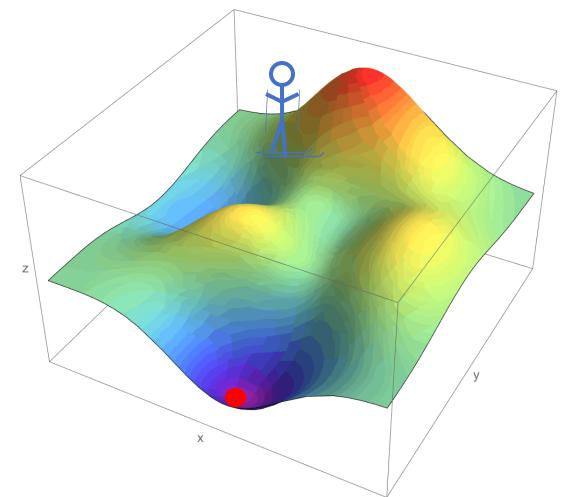


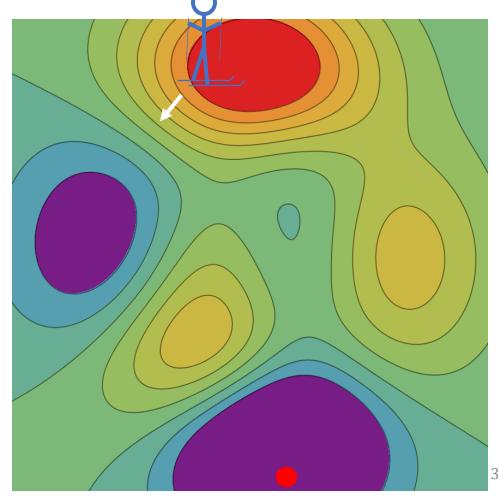




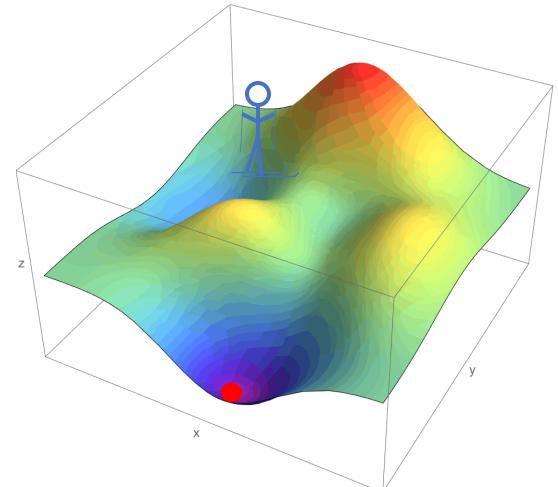


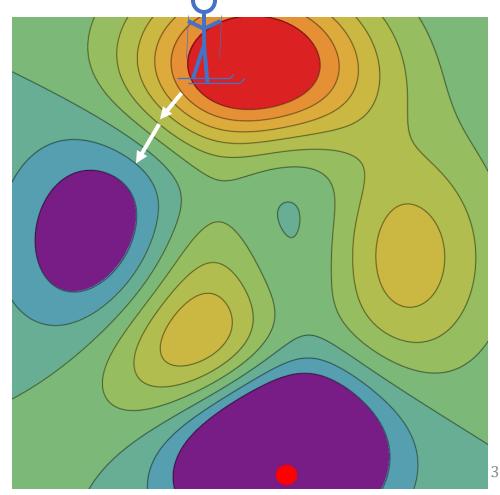




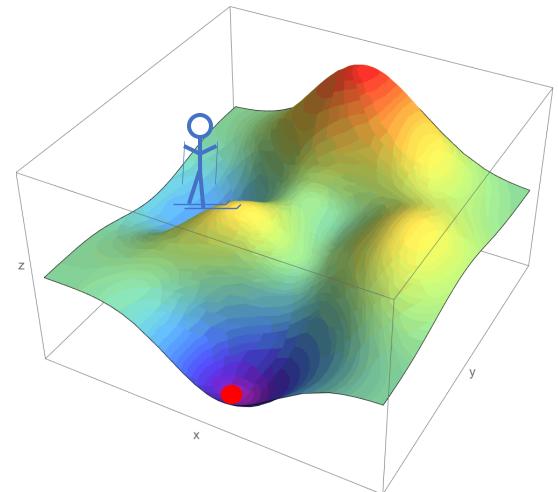


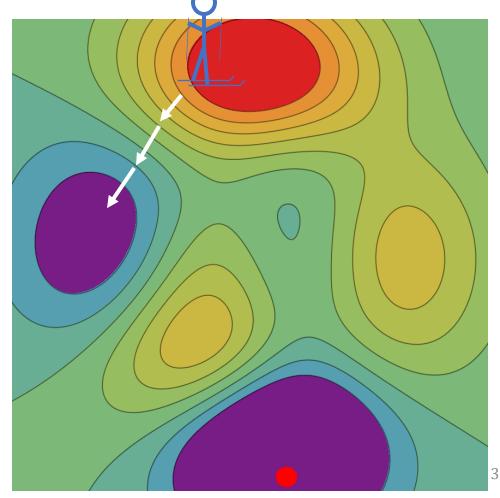
Simple idea: follow direction of steepest descent!



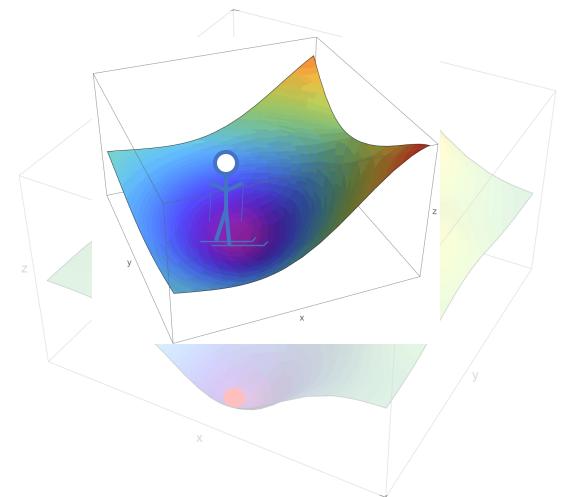


Simple idea: follow direction of steepest descent!

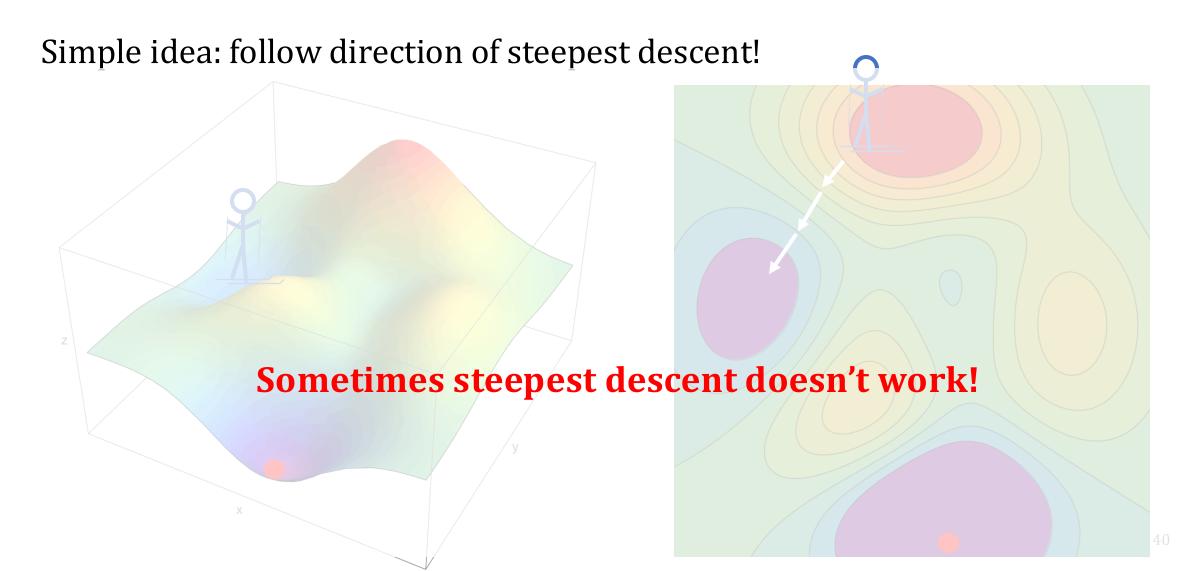




Simple idea: follow direction of steepest descent!







Q: For which optim problems does steepest descent work?

Q: For which optim problems does steepest descent work?

→ see Part II of my PhD thesis!

Q: For which optim problems does steepest descent work?

→ see Part II of my PhD thesis!

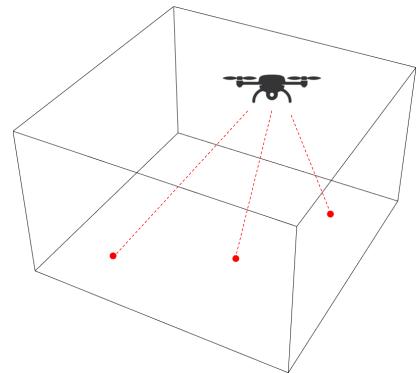
Simple application from thesis: Locating a drone from distance sensors

Q: For which optim problems does steepest descent work?

→ see Part II of my PhD thesis!

Simple application from thesis: Locating a drone from distance sensors

Given: distances between **drone** and **sensors**



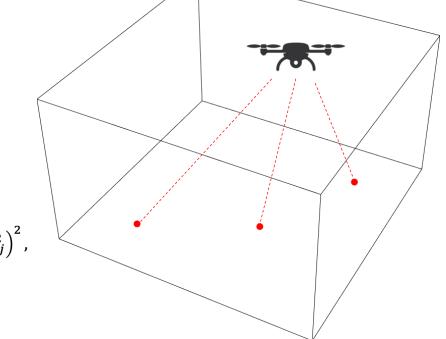
Q: For which optim problems does steepest descent work?

→ see Part II of my PhD thesis!

Simple application from thesis: Locating a drone from distance sensors

Given: distances between drone and sensors

Goal: Find location of drone, i.e., x, y, z-coordinates



$$\min \sum_{ij \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2,$$
over $z_1, z_2, ..., z_n \in \mathbb{R}^k$

Q: For which optim problems does steepest descent work?

→ see Part II of my PhD thesis!

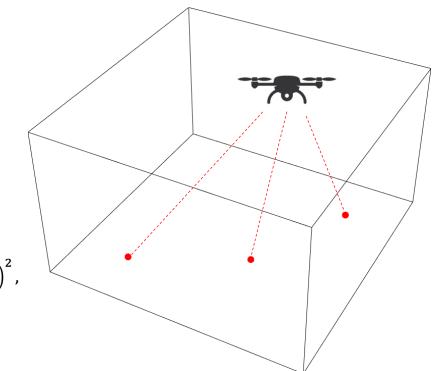
Simple application from thesis: Locating a drone from distance sensors

Given: distances between drone and sensors

Goal: Find location of drone, i.e., x, y, z-coordinates

Thm: Steepest descent always works! (under assumptions)

$$\min \sum_{ij \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2,$$
over $z_1, z_2, ..., z_n \in \mathbb{R}^k$



Q: For which optim problems does steepest descent work?

→ see Part II of my PhD thesis!

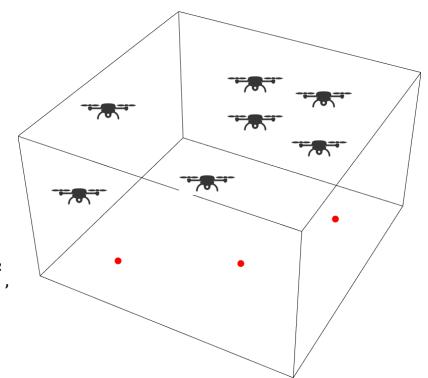
Simple application from thesis: Locating a drone from distance sensors

Given: distances between drone and sensors

Goal: Find location of drone, i.e., x, y, z-coordinates

Thm: Steepest descent always works! (under assumptions)

$$\min \sum_{ij \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2,$$
over $z_1, z_2, ..., z_n \in \mathbb{R}^k$



Other algorithms than steepest descent?

$$x_0 \longrightarrow f(x_0), \nabla f(x_0)$$
Algo $\longrightarrow x_1 \longrightarrow f(x_1), \nabla f(x_1)$

$$\longrightarrow f(x_2), \nabla f(x_2)$$
Algo $\longrightarrow x_T$ so that $f(x_t)$ is small

Other algorithms than steepest descent?

Yes! SGD, Nesterov acceleration, Trust regions, ...

$$x_0 \longrightarrow f(x_0), \nabla f(x_0)$$
Algo $\longrightarrow x_1 \longrightarrow f(x_1), \nabla f(x_1)$

$$\longrightarrow f(x_2), \nabla f(x_2)$$

Algo $\longrightarrow x_T$ so that $f(x_t)$ is small

Other algorithms than steepest descent?

Yes! SGD, Nesterov acceleration, Trust regions, ...

Which algo is **best**? [Smallest time T to finish. Eg, assume 1 query per second]

Other algorithms than steepest descent?

Yes! SGD, Nesterov acceleration, Trust regions, ...

Which algo is best? [Smallest time T to finish. Eg, assume 1 query per second]

• Space of algos is huge (infinite), can't test all of them on your problem!

Other algorithms than steepest descent?

Yes! SGD, Nesterov acceleration, Trust regions, ...

Which algo is **best**? [Smallest time T to finish. Eg, assume 1 query per second]

- Space of algos is huge (infinite), can't test all of them on your problem!
- That's where math enters *prove* there is no better algorithm

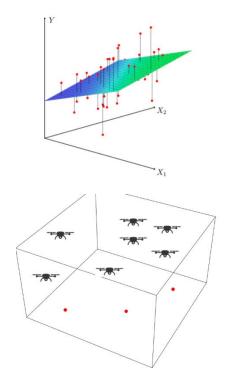
```
Consider a class of optimization problems \{f_1, f_2, ...\} \min_{x \in M} f_i(x)
```

Consider a **class** of optimization problems $\{f_1, f_2, ...\}$

$$\min_{x \in M} f_i(x)$$

Examples: Linear regression with different sets of data,

Drone localization with different distance measurements



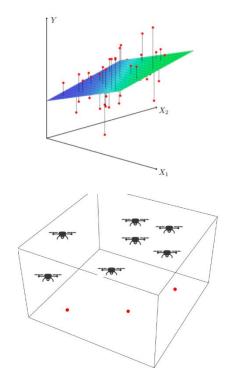
Consider a **class** of optimization problems $\{f_1, f_2, ...\}$

$$\min_{x \in M} f_i(x)$$

Examples: Linear regression with different sets of data,

Drone localization with different distance measurements

Amanda, Chris, Joe each have an algo

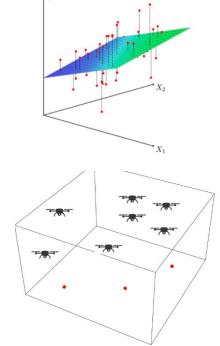


Consider a **class** of optimization problems $\{f_1, f_2, ...\}$

$$\min_{x \in M} f_i(x)$$

Examples: Linear regression with different sets of data,

Drone localization with different distance measurements



Amanda, Chris, Joe each have an algo

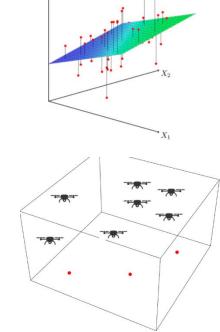
Amanda: Mine minimizes every problem in the class in at most 200 seconds.

Consider a **class** of optimization problems $\{f_1, f_2, ...\}$

$$\min_{x \in M} f_i(x)$$

Examples: Linear regression with different sets of data,

Drone localization with different distance measurements



Amanda, Chris, Joe each have an algo

Amanda: Mine minimizes every problem in the class in at most 200 seconds.

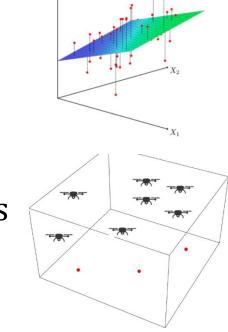
Chris: " 100 seconds.

Consider a **class** of optimization problems $\{f_1, f_2, ...\}$

$$\min_{x \in M} f_i(x)$$

Examples: Linear regression with different sets of data,

Drone localization with different distance measurements



Amanda, Chris, Joe each have an algo

Amanda: Mine minimizes every problem in the class in at most 200 seconds.

Chris: " 100 seconds.

Joe: " 50 seconds.

Amanda, Chris, Joe each have an algo

Amanda: Mine minimizes **every** problem in the **class** in at most 200 seconds.

Chris: " 100 seconds.

Joe: " 50 seconds.

Amanda, Chris, Joe each have an algo

Amanda: Mine minimizes **every** problem in the **class** in at most 200 seconds.

Chris: " 100 seconds.

Joe: " 50 seconds.

Amanda, Chris, Joe each have an algo

Amanda: Mine minimizes every problem in the class in at most 200 seconds.

Chris: " 100 seconds.

Joe: " 50 seconds.

Chris: I can prove that no other algo can do better than 100 seconds. Therefore,

My algo is the best (optimal)

Amanda, Chris, Joe each have an algo

Amanda: Mine minimizes **every** problem in the **class** in at most 200 seconds.

Chris: " 100 seconds.

Joe: " 50 seconds.

- My algo is the best (optimal)
- Amanda's is suboptimal

Amanda, Chris, Joe each have an algo

Amanda: Mine minimizes every problem in the class in at most 200 seconds.

Chris: " 100 seconds.

Joe: " 50 seconds.

- My algo is the best (optimal)
- Amanda's is suboptimal
- Joe is lying

Amanda, Chris, Joe each have an algo

Amanda: Mine minimizes every problem in the class in at most 200 seconds.

Chris: " 100 seconds.

Joe: " 50 seconds.

- My algo is the best (optimal)
- Amanda's is suboptimal
- Joe is lying

Consider a **class** of optimization problems $\{f_1, f_2, ...\}$ $\min_{x \in M} f_i(x)$

Consider a **class** of optimization problems $\{f_1, f_2, ...\}$ $\min_{x \in M} f_i(x)$

Chris: I can prove that no other algo can do better than 100 seconds.

What this means: For every algo A, I mathematically construct a problem f in the class so that running A on f takes at least 100 seconds to finish.

Consider a **class** of optimization problems $\{f_1, f_2, ...\}$ $\min_{x \in M} f_i(x)$

Chris: I can prove that no other algo can do better than 100 seconds.

What this means: For every algo A, I mathematically construct a problem f in the class so that running A on f takes at least 100 seconds to finish.

→ Part I of my thesis, looks at a specific **class** (geodesically convex functions), and proves there is a fundamental limit for that class.

→ Part I of my thesis, looks at a specific **class** (geodesically convex functions), and proves there is a fundamental limit for that class.

→ Part I of my thesis, looks at a specific **class** (geodesically convex functions), and proves there is a fundamental limit for that class.

Some consequences:

• Steepest descent is optimal for that class (under some assumptions)

→ Part I of my thesis, looks at a specific **class** (geodesically convex functions), and proves there is a fundamental limit for that class.

Some consequences:

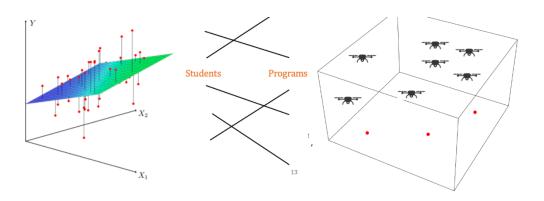
- Steepest descent is optimal for that class (under some assumptions)
- Surprising because expectation in community was that steepest descent is not optimal

Steepest Descent **Optimal!**

Nesterov Accelerated Descent?
Not Possible!

Some takeaways

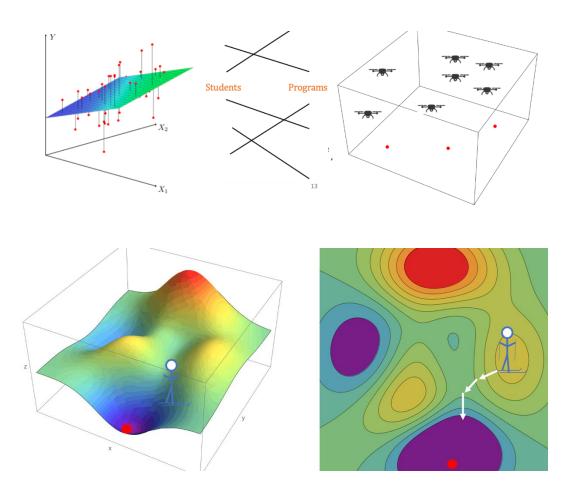
Optimization everywhere



Some takeaways

Optimization everywhere

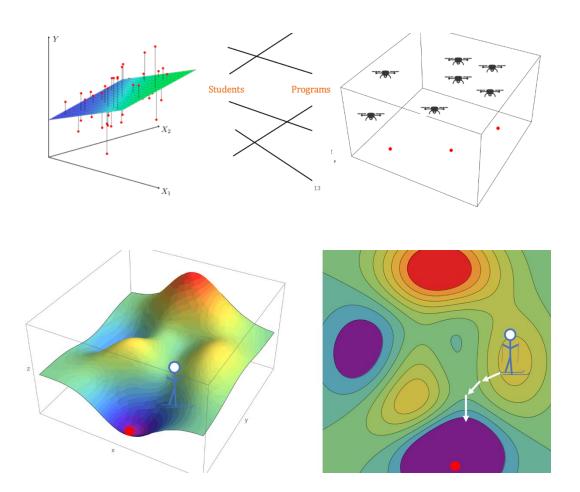
Steepest descent



Some takeaways

Optimization everywhere

Steepest descent



Math in optim: best algorithm

Steepest Descent **Optimal!**

Nesterov Accelerated Descent?

Not Possible!